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FOREWORD

The work described was performed as a task within the Electro-
mechanical Transducer Project. This is a continuing project for the

development of calibration and evaluation methods for electromechani-
cal transducers, supported by a number of Government agencies. This
task was funded by the National Aeronautics and Space Administration
through the Langley Research Center under order number L-88319.

Paul S. Lederer
Acting Chief
Components and Applications Section
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A New Dynamic Pressure Source for the
Calibration of Pressure Transducers

Carol F. Vezzetti, John S. Hilten,
J. Franklin Mayo-Wells and Paul S. Lederer

A dynamic pressure source is described for producing sinusoidal ly

varying pressures of up to 3^ kPa zero-to-peak, over the frequency
range of approximately 50 Hz to 2 kHz. The source is intended for

the dynamic calibration of pressure transducers and consists of a

liquid-filled cylindrical vessel, 11 cm in height, mounted upright
on the armature of a vibration exciter which is driven by an ampli-
fied sinusoidal ly varying voltage. The transducer to be calibrated
is mounted near the base of the thick-walled aluminum tube forming
the vessel so that the pressure-sensitive element is in contact with
the liquid in the tube. A section of the tube is filled with small

steel balls to damp the motion of the 10-St dimethyl siloxane work-
ing fluid in order to extend the useful frequency range to higher
frequencies than would be provided by an undamped system.

The dynamic response of six transducers provided by the sponsor
was evaluated using the pressure sources; the results of these cali-
brations are given.

Key words: calibration; dynamic; dynamic calibration; dynamic
pressure; dynamic pressure source; liquid column; pressure; pressure
source; pressure transducer; sinusoidal pressure; transducer.

1. INTRODUCTION

Increased use of electromechanical transducers for measure-
ment of dynamic pressures in complex processes arising in diverse
fields has increased the importance of determining the dynamic
characteristics of such transducers. Dynamic pressure-calibration
systems now in existence do not meet all the amplitude or fre-
quency range requirements of present technology.



In 1971 the National Bureau of Standards Instrumentation
Applications Section'

1

' developed a method for generating sinusoi-
dal ly varying pressures constant in amplitude within +5% over a

frequency range of a few Hertz to about 1 kHz [1]**. In the

current work, this method has been modified and extended [2,

3] in both amplitude and frequency capability to result in a

source of sinusoidal ly varying pressures of up to 3^ kPa zero-
to-peak (about 5 psi zero-to-peak), over the frequency range of

approximately 50 Hz to 2 kHz. The source is intended for the

dynamic calibration of pressure transducers and consists of a

liquid-filled cylindrical vessel, 11 cm in height, mounted up-

right on the armature of a vibration exciter which is driven by

an amplified sinusoidal ly varying voltage. The transducer to

be calibrated is mounted near the base of the thick-walled alumi-
num tube forming the vessel so that the pressure-sensitive element
is in contact with the liquid in the tube. A section of the tube

is filled with small steel balls to damp the motion of the 10-St

dimethyl siloxane working fluid in order to extend the useful fre-

quency range to higher frequencies than would be provided by an

undamped system. Both the natural frequency and the degree of
damping of the combined 1 iquid-col umn-and-transducer structure
determine the useful upper frequency limit.

EXPERIMENTAL DEVELOPMENT OF SOURCE

2.1 Theoretical Considerations

For the geometry described, both the amplitude of the sinu-

soidal ly varying pressure and the natural frequency of the liquid

column may be calculated to first approximations by simple re-

lations to permit comparison with experimental results.

The Section is now the Components and Applications Section.
^Figures in brackets indicate the literature references listed in

section 7.



Damping is also an important consideration because a damped

system may have a higher useful frequency range than the same

system undamped. With an undamped, single-degree-of-f reedom
system, the amplitude-frequency response remains constant within
+5% up to approximately 20% of the natural frequency. In a sys-

tem with optimum damping (a damping ratio of about 0.6 of criti-
cal), the amplitude-frequency response remains constant within
+5% to about 80% of the natural frequency [3, A] . To maintain
a flat response to 2 kHz thus requires an undamped system with a

natural frequency of 10 kHz, an optimally damped system with a

natural frequency of 2.5 kHz, or a non-optimal ly damped system
with a natural frequency between 2.5 and 10 kHz, with the exact
natural frequency required dependent on the degree of damping.

2.1.1 Pressure Ampl itude - The factors that in combination
determine the pressure levels attainable over the frequency range
of interest are (1) the force and displacement capabilities of
the vibration exciter, (2) the density of available working fluids,

(3) the height of the liquid column, and (k) the degree of damping.
This last factor interacts with the others and depends on geometry,
on the bulk modulus and viscosity of the fluid. As noted above,
damping need not be considered at frequencies below about 20% of
the system natural frequency because the amplitude-frequency re-

sponse is flat up to this limit. Up to the stated limit, the
amplitude of the sinusoidal pressure generated within the liquid
column and acting on the transducer is given by [1],

P - ah p
c

where

P = pressure (Pa zero-to-peak)

,

.

a = acceleration amplitude (gn zero-to-peak )

,

hc= liquid-column height above the center of the
transducer diaphragm (m) , and

p = density of liquid (kg/m 3
)

.

As an example, for the source to be described in this paper, h. =

0.1m and p = 972 kg/m 3
. At an acceleration of 36 gn zero-to-peak,

the pressure is calculated to be 3^ kPa zero-to-peak, and at 20 gn
zero-to-peak, 19 kPa.

2.1.2 Natural Frequency - The natural frequency of a liquid
column is directly proportional to the square root of the velocity
of sound in the liquid and inversely proportional to the height of

fThe symbol gn represents the unit of acceleration equal to the
standard value of the acceleration of gravity at the earth's surface



the column. For an infinitely stiff, open-topped vessel containing

the liquid, the system has one degree of freedom with a natural fre-

quency given by [1]

'n - ••« * « * *
where

fn
= natural frequency (Hz),

h = total height of liquid column (m) , and
B = bulk modulus (Pa)

.

The quotient of B and p is proportional to the velocity of sound in

the liquid. For the dynamic pressure source, h = 0.11 m and B =

9.^7 x 10 8 Pa, the value given by the supplier for 10-St dimethyl

siloxane. The undamped natural frequency is calculated to be 2.24
kHz.

In practice the tube is not infinitely stiff, but has some
elasticity. For other than thin-walled vessels, a volume change in

the tube itself is usually small enough compared to other volume
changes that it may be neglected for practical calibrations. More
importantly, the transducer diaphragm forms part of the tube wall,
and since this diaphragm is displaced in response to pressure, an

overall volume change occurs. The effect of this change is to

lower the natural frequency as the effective bulk modulus is reduced
The effective bulk modulus may be defined by the relation [1]

B- Y_
V

B
+ dV

t

where

B 1 = effective bulk modulus (Pa),

V = volume of liquid in the tube (m 3
) , and

dV t
= change of volume resulting from unit pressure change

(m 3/Pa).

As an example, transducer B introduces a volume change of 9.14 x 10" 15

m 3 /Pa, as calculated from information supplied by the manufacturer.
With this transducer installed in the source, the effective bulk
modulus is calculated to be 7-03 x 10 8 Pa and the natural frequency
is lowered to 1 .93 kHz.

In the source, steel balls are used for damping and the volume
of the liquid is reduced by an amount equal to the total volume of
the balls, although the column height remains unchanged. As an ex-
ample, consider that 15% of the volume of the liquid is replaced by
the balls (as was done in some of the experiments). The effective



bulk modulus would then be given by 6.73 x 10 8 Pa, and the undamped

natural frequency would become 1.89 kHz. If the balls were to occupy

50% of the available volume, the calculated natural frequency would

be 1.72 kHz, which is significantly lower than the 2-kHz goal.

Combining the results of the above discussion, the natural fre-

quency is given by

1

B(V
r ' V

f = 0.25 A £
n h

h

p(V - V. + BdVjCD t

where

Vc
= volume available for liquid with no balls present (m 3

)

,

Vl = volume occupied by balls (m 3
) , and

h, B, p, and dV are as given above.

2.2 Preliminary Investigations

Preliminary experiments described in the progress reports [ 3 ]

were conducted to investigate approaches for improving the frequency
range of the method developed earlier. These experiments involved

a variety of working liquids, including water, tetrabromoethane,
petroleum oils, a fluorocarbon liquid, dimethyl siloxane liquid of
various viscosities, glycerine, and mercury. These candidate liquids
were chosen because of specific physical properties given in table 1

and on the basis of experience. Chemical reactivity and the criterion
of ready availability also governed the choice of liquids. For example,
water was chosen because it has a relatively high bulk modulus and be-

cause its use in the earlier work permitted intercomparison of experi-
mental results. Tetrabromoethane, the fluorocarbon liquid, and es-
pecially mercury have high densities and therefore should confer high-
pressure capability with short columns of liquid. Mercury has been
used in related work with a closed-tube dynamic pressure source* [5].

Dimethyl siloxane liquids and petroleum oils are available in a wide
range of viscosities; glycerine possesses a combination of high vis-
cosity and high bulk modulus.

The damping provided by a number of column geometries was also
investigated experimentally with the various liquids, as shown in

table 1. Among these experiments, which were designed to increase
the available wetted surface compared to that of the interior of a

simple tube, were trials with columns of various cross-sections (in-

cluding columns with vertical fins, spiral fins, and multiple channels)
and with columns packed with various materials (including bundles of
smal 1 -diameter tubes, sintered metal filters, and sea sand). A se-

lection of columns is shown in figure 1. Damping of a magnetic liquid
by means of a coil electromagnet wound around the outside of the column
was also attempted.

5



The results of these investigations tended to single out 10-St

dimethyl siloxane as the liquid possessing the best combination of

properties, including handling quality, of those liquids tried. The
principal reasons for rejecting the other liquids may be summarized
as follows: water and tetrabromoethane -- low viscosity precludes
achievement of effective damping; petroleum oils -- viscosity is

highly temperature dependent; fluorocarbon liquid -- bulk modulus
too low; glycerine -- presence of dissolved gas (which could not be

removed reliably by the vacuum filling procedures described in an

earlier report [3] reduced bulk modulus to too low a value; and
mercury -- viscosity too low.

2.3 Background for Use of Steel Balls as Column Packing

At an early stage of the work, the use of a material such as

sea sand had been proposed as a means of increasing the column wetted
surface, and hence the degree of damping, by a very large factor.
However, experimental difficulties and inconclusive results discour-
aged further work along these lines at the time. The comparative
success achieved with a column packed with small tubes (inside diam-
eter 0.16 cm) and filled with 10-St dimethyl siloxane encouraged a

search for other geometries offering still greater wetted surface
(without the insuperable filling problems which had precluded the
use of tubes substantially smaller than 0.16 cm i.d.). The use of

small objects as a column packing was again considered, with the re-

quirement that the objects not absorb or be soluble in the dimethyl
siloxane. If suitable objects could be found in a selection of sizes,

a range of wetted areas would be available for experiment. The
polished steel balls produced for use in ball bearings are readily
available in a range of sizes and do not interact with dimethyl silox-
ane, and were therefore tried as a column packing. These trials (de-

scribed in 2) were successful in that the project goals for the source
were met (sinusoidal ly varying pressures of at least 3** kPa zero-to-
peak, flat to within +5% from approximately 50 Hz to 2 kHz), and de-

velopment of the source was considered complete for the intended pur-

poses.

2.k Design and Description of Dynamic Pressure Source

An overall view of the dynamic pressure source and associated
instrumentation is shown in figure 2. Mounted on the armature of the
vibration exciter (C) is the source column (A) with the reference
transducer (B) screwed into the base. The position for the transducer
to be calibrated is on the opposite side of the column from (B) and is

not shown. The controller (D) for the vibration exciter supplies the
driving signal and can be programmed to sweep over the frequency range
of interest at constant acceleration, displacement, or velocity. The
vibration exciter system has a displacement capability of 1.3 cm peak-
to-peak and can impart accelerations of 25 gn to an 1

1 -kg mass at
frequencies of 30 Hz and above.



A digital voltmeter iE) may be switched to read the output of

the test transducer, the reference transducer, or the accelerometer

mounted in the armature of the vibration exciter. Transducer excita-

tion power supplies are denoted by (F) and (G) , and (H) is the accel-

erometer amplifier. Pressure transducer output as a function of fre-

quency is displayed on the oscilloscope (l), which is equipped with a

recording camera.

2.4.1 Column Design - In order to accommodate the ball packing,

the column required modification with respect to earlier columns used.

The following considerations governed the design: (1) the balls must

not be allowed to contact and thus damage the transducer diaphragm,

(2) the balls must not be permitted to move in relation to one another
or to the column to any significant degree (ball movement would result

In uncontrolled changes in damping), (3) a method for conveniently
varying the ball loading (ball size and number) is required, and (4)

the amount of liquid displaced by the balls should not be so great as

to lower the natural frequency below acceptable limits, that is, as

shown in 2.1.2, the balls should occupy less than half of the avail-
able volume.

The design that was selected utilized pierced circular plates
to clamp the balls in a section of the bore near the bottom of the

column. The geometry of the plates was subject to the following con-
siderations: (1) the plates should have the maximum practicable
amount of open area so as not to impede the movement of the dimethyl
siloxane liquid (thus not to change the damping characteristics or
the natural frequency appreciably), (2) the holes should be small

enough to retain the smallest balls envisaged, (3) the distance be-

tween the holes should be less than the diameter of the smallest ball

envisaged (to prevent balls from blocking all the holes), and (4) the

plates should be thick enough to provide adequate rigidity.

2.4.2 Column Description - The construction that was chosen to
satisfy the varying requirements is shown in a cross-sectional sketch,
figure 3. Steel balls (K) are clamped tightly in place by two 0.48-

cm-thick pierced steel plates (L) . The outer diameter of the plates
loosely fits the inner diameter of the aluminum column; forty-five
0. 13-cm-diameter holes drilled through each plate perpendicular to the
faces account for approximately one-third of the face area and provide
for free movement of the liquid. The bottom plate rests on a machined
shoulder 1.6 cm above the bottom of the column bore. The top plate
clamps down on the ball packing, the clamping force being transmitted
to the plate from a vented, threaded plug (M) by means of a brass re-
tainer tube (N) which is a loose fit in the main bore (J) . This tube
has an outside diameter of 1.6 cm and a 0.16-cm wall thickness. The
plug engages threads machined into an upper section of the bore. The
volume of the column bore available for ball packing may be adjusted
through the use of retainer tubes of various lengths combined with



various positions of the threaded plug. Threaded holes for mount-
ing the reference transducer (B) and the transducer to be calibrated
(0) are provided in two machine flats near the base of the column.
The centerline of these holes is 1 cm above the bottom of the bore.
The column is fastened to the vibration exciter armature by means of
four machine screws passing through holes (not shown) in the column
flange.

2.4.3 Tests to Determine Column Packing and Source Repeatability -

The output of reference transducer E was used to determine an accept-
able column packing in terms of ball diameter and length of section
packed with balls. Balls with diameters of 0.24, 0.28, 0.32, 0.40,
and 0.48 cm were available for these tests with selected section lengths
of 2.0, 2.7, 3-0, 6.0, and 8.0 cm.

The procedure used was as follows. Transducer E was mounted on
the column and the controller for the vibration exciter set to sweep
the excitation frequency from 35 Hz to 3 kHz at an arbitrary constant
acceleration. Three swept-f requency response curves of transducer E

output were generated on the oscilloscope screen and photographically
recorded: (1) with the column empty of liquid, plates, etc., (2) with
the column filled with 10-St dimethyl siloxane to the 1

1 -cm level, and

(3) with the column filled with dimethyl siloxane as in (2) and the

plates, retainer tube, and plug in place (the plates separated by means
of a spacer tube, since no balls were used). The curve from run (1) is

the transverse vibrational response of transducer E. From the run (2)

curve, the resonance frequency and damping characteristics of the basic
system may be determined. Resonance was at 2.35 kHz, and the damping
ratio approximately 0.03 of critical. The curve from run (3) shows a

resonance frequency of 2.20 kHz and a damping ratio of 0.10 of criti-
cal, which was considered to be acceptable.

The experimental value of resonance frequency from run (2) is

higher than the calculated value of 2.24 kHz obtained in 2.1.2. The
difference may result from several sources, including an inexact knowl-
edge of the bulk modulus for the 10-St dimethyl siloxane used and im-

precision in the determination of resonance frequency. It is also
possible that the theory is deficient. Another factor, not considered
in the analysis of 2.1.2, that can affect the resonance frequency is

the presence in the liquid of absorbed gases and other impurities.
The presence of gases always results in a lowered resonance frequency,
and the presence of impurities usually does.

Other swept-f requency response curves of transducer E output
were then generated and recorded with various sized balls and various
section heights. These tests showed that damping could be varied over
a wide range (from very under damped to very over damped) and that,
regardless of ball size, the resonance frequency is lowered signifi-
cantly when either 6.0- or 8.0-cm section lengths are used. The probable
reason for this lowered resonance frequency is that with these quantities
of balls the volume available for liquid (filled to the 1

1 -cm level) is

8



reduced enough to produce a significant reduction in the value of the

effective bulk modulus, as discussed in 2.1.2.

Examples of the results obtained using 0.2^-cm balls are shown
in figure ^4. With a ball section 3.0 cm in length, the pressure am-

plitude is seen to decrease with increased frequency (top trace), in-

dicating that the calibrator system is overdamped. With a 2.0-cm
section, the pressure amplitude is seen to rise to a maximum between
2.1 and l.k kHz (center trace), indicating that the column is under-
damped (estimated to be 0.38 of

.

critical) . The most nearly flat re-

sponse was obtained with the 2.7 _cm section, for which the pressure
amplitude is seen to remain almost constant to approximately 2.k kHz

(bottom trace). The small resonances near 1.1 and 1 .*t kHz are be-
lieved to result from mechanical resonances of the column assembly,
and data near these frequencies are not used.

As described in 3«3, reference transducer E was used in 16 cali-
brations of other transducers. In particular, 30 measurements were
made with a constant acceleration of 20 gn at two frequencies, 35 and
50 Hz, for which the output should be the same. Two computed values
are also available. The data and statistics are given in table 2.

The computed coefficient of variation of 1.1% is considered to demon-
strate the acceptable repeatability of the source. Sources of both
systematic and random errors are discussed in 3.2.

3. CALIBRATION

3.1 Calibration Procedure

Before calibration of a pressure transducer can be carried out
using the source, the size of the contribution to zero shift from the
transducer transverse acceleration response is checked. The transducer
is mounted on the empty column, and the vibration exciter driven at the
intended test level, usually 20 gn zero-to-peak. For all transducers
tested in the study, the transverse response was not significant, i.e.,
contributed to less than 0.02% of the transducer response.

For the calibration itself, the column must be loaded with balls
and filled. The procedure is as follows:

1. Mount the transducer to be calibrated and the reference
transducer (or, if not used, a plug) in the holes provided
at the base of the column.

2. Position the restraining plates, steel balls, and retainer
tube in the column.

3. Place the column in a suitable bell jar, as shown in figure
5. The bell jar should have a tube passing through its top
and be equipped with a ball valve (Q)

.



k. Attach a suitable flask to the ball valve with the upper
opening unstoppered. One type of suitable flask is a

leveling bulb. The flask should have a volume of at least
twice the volume of the empty column.

5. Close the valve.

6. Pour at least enough 10-St dimethyl siloxane into the flask
to fill the empty column.

7. Connect the bell jar lower port and the upper opening of the
flask to a mechanical vacuum pump and operate the pump until
the liquid in the flask does not bubble (fifteen minutes is

usually sufficient).

8. Open the valve until the column is filled approximately to
the desired level; then close the valve.

9. Slowly release the vacuum in the bell jar.

10. Remove the column from the jar.

11. Mount the column on the armature of the vibration exciter.

12. Use a suitable depth micrometer to measure the liquid level.

The lowest setting of the micrometer at which a drop of
liquid adheres to the end of the micrometer probe is taken
as the distance between the liquid surface and the top of
the column.

13. Adjust the level by adding or removing a few drops with a

suitable instrument, such as an eye dropper, until the de-
sired level is attained.

14. Screw the threaded plug into the fixture and torque to the
recommended value of from 16 to 19 N*m (12 to \k pound-force
•ft). This completes the filling procedure.

Following filling, the controller of the Vibration exciter is set to
sweep the frequency of the driving signal from 35 Hz to 3 kHz at a

given acceleration, usually 20 gn zero-to-peak.

An acceleration of 36 gn zero-to-peak is required to generate
pressures of 3** kPa zero-to-Peak with a 10-cm column of 10-St dimethyl
siloxane. However, as 36 gn zero-to-peak is close to the upper acceler-
ation level capability of the vibration exciter with the column as load,

and operation of the exciter at that level resulted in occasional over-
travel alarms, the majority of the calibrations reported in this paper
were made using an acceleration of 20 gn zero-to-peak, resulting in

pressures of 19 kPa zero-to-peak over the frequency range of 35 Hz to

3 kHz. One test was run at an acceleration of 36 gn zero-to-peak over
a frequency range of 50 Hz to 3 kHz to demonstrate the higher pressure
capability of the method. In this test, the lower frequency limit of

50 Hz was imposed by the displacement limits of the armature of the
vibration exciter.

10



During a dynamic calibration run, readings on the digital
voltmeter of the transducer outputs are recorded at selected f re-

•

quencies, and curves of transducer response vs frequency are re-
corded by photographing the oscilloscope display of the test (and
reference, if desired) transducer outputs as the fixture is vibrated
at a constant acceleration over the frequency range of interest.

Static calibrations of d-c responding transducers are made with
the transducer mounted in the liquid-filled fixture by imposing known
pneumatic pressures on the top of the liquid column and measuring the
resulting transducer output with the digital voltmeter. A liquid-
head correction is made. Static pressures are produced with a pre-
cision bellows and read with a dial gage.

3.2 Error Analysis

The dynamic pressure source provides capabilities not before
available. There is no "standard transducer" that can be used to

evaluate the source performance. The best that can be done is to
carry out repetitive measurements on a transducer for which theory
predicts that the frequency response should be flat beyond the fre-
quency range of interest. Such a series of measurements was carried
out with the piezoelectric quartz crystal reference transducer E;

the results are given in 2.^.3. Because there is no "standard trans-
ducer," it is instructive to analyze the potential sources of error.

Factors contributing to the uncertainty of the pressure avail-
able from the source include (1) uncertainty in the height of the
liquid column resulting from meniscus effects and from machining in-

accuracies, (2) uncertainty in the knowledge of the true density of
the liquid resulting from variations in temperature, (3) uncertainty
in the acceleration produced by the vibration exciter and measured
by its accelerometer , (k) uncertainties in various voltage measure-
ments, and (5) electrical noise. For the dynamic calibration as a

whole, uncertainty in the amount of transducer output resulting from
transverse vibrational response, additional voltage-measurement un-
certainties, and additional electrical noise should be added to the
uncertainties listed above. For static calibrations, uncertainty in

the knowledge of the additional pressure applied to the liquid in

the column must be considered.

Estimated values for these uncertainties are given in table 3.

The overall estimated uncertainty for dynamic calibration measurements
is ±h.\% of the true value and for static calibration measurements
+0.k% of the true value.

3-3 Results from the Calibration of Six Transducers

Six pressure transducers were supplied by the project sponsor for
dynamic calibration using the dynamic pressure source. The character-
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istics of these test transducers and of reference transducer E are
given in table 4. Three of the transducers (Al , A2, and A3) are of

the same model and have a silicon diaphragm into which a Wheatstone
bridge circuit has been diffused. The other three (B, C, and D) are
bidirectional unbonded strain-gage types. Reference transducer E,

used as a control in all tests, is a piezoelectric quartz crystal
transducer, as has been noted.

Three calibration runs each were made of transducers Al, A2, A3,

C, and D using a 20 gn zero-to-peak acceleration level from 35 Hz to

3 kHz. Transducer B was calibrated in only one run (calibration No. 10)

and at a level of only 10 gn zero-to-peak. The reason for the change
in procedure was that transducer B was accidentally overranged in

preliminary resonance tests and damaged as a result. After the damage
had occurred, the output waveform of the transducer was distorted when
full-scale sinusoidal pressure was applied. Calibration at approximately
one-half the full-scale pressure was attempted and resulted in good wave-
form; therefore, calibration was completed at that level.* The test
transducer and the reference transducer E outputs were monitored on an

oscilloscope whose horizontal deflection system was driven by a swept-
frequency sine-wave generator from 35 Hz to 3 kHz. In addition, the

outputs were monitored with a digital voltmeter at 35, 50, 75, 100, 200,

300, and 400 Hz for all calibrations and at 500 Hz and 1, 1.5, 2, and

2.5 kHz for selected calibrations. Reference transducer E was included
as a control in all 16 of the calibration runs.

The frequency-response curve for transducer Al , shown in figure 6A,

is different from that of transducer E and shows evidence of overdamp-
ing. The curves for transducers A2 and A3 are similar. The manufacturer
was asked to supply details of the design. It was reported that this
model of transducer has a protective diaphragm 0.015~cm thick in front
of the sensing diaphragm, with an air space of 0.015 to 0.033 cm between
the two diaphragms. Small holes, 0.013 to 0.015 cm in diameter, around
the periphery of the protective diaphragm admit the pressure to the
sensing diaphragm. It seems likely that this arrangement significantly
affects the damping characteristics of the transducer.

For a given transducer, it is expected that all measurements made
at 35 Hz and 50 Hz would agree. For the three transducers Al, A2, and
A3, the mean values of the six measurements (two measurements in each
of the three calibration runs for each transducer) are 21.232, 21.483,
and 23 . 427 mV rms , respectively. The maximum deviations from these means
are 0.3%, 0.2%, and 0.7%, with sample standard deviations of 0.059, 0.031,
and 0.111 mV rms. Comparison of the static calibration output measurement
with the above mean values showed differences of 3-7%> 2.9%, and 2.k% for

transducers Al, A2, and A3, respectively. The data are given in table 5.

^The oscilloscope trace shown in figure 6B was recorded using an accelera-
tion of 18 gn zero-to-peak before the damage occurred. (18 gn gives full-

scale pressure variations for this transducer.)
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Figures 6B, 6C, and 6D are of the frequency response curves

for transducers B, C, and D. The mean values of the six measure-

ments made at 35 Hz'and 50 Hz for transducers C and D are 10.67

and 3.550 mV rms , respectively. The maximum percent deviations from

these means are 0.**% and 0.8%, with sample standard deviations of

0.027 and 0.015 mV rms. No statistics are given for transducer B,

which was* cal ibrated in only one run. Comparison of the static cali-

bration output measurement with the above mean values showed differ-

ences of 2.6% and 2.4% for transducers C and D, respectively . Com-

parison of the mean of the two measurements at 35 Hz and 50 Hz for

transducer B with the static calibration output measurement for this

transducer showed a difference of 0.8%. These reported differences
between static and low-frequency dynamic calibrations probably result

from the uncertainties involved in determining the height of the

liquid column. It is not possible to perform a static calibration on

reference transducer E, as this transducer has no response to static
pressure.

If the test transducer natural frequency is high, the undamped
resonance frequency of the source-transducer combination will not be

appreciably affected: this is the case for transducer Al (and A2 and
A3), as is shown by the frequency-response curve in figure 7A. The
vertical axis scale (transducer output) is arbitrary. If the test

transducer natural frequency is relatively low, as it is for trans-
ducers B, C, and D (3.5 kHz, 5 kHz, and 8.5 kHz, respectively), the

calibrator system resonance will be lowered. The frequency-response
curves in figures 7B, 7C, and 7D show the resonance frequency of the

source-transducer combination as being about 1.3, 1.7, and 2.2 kHz,

respectively. These curves and values were obtained with the column
filled with dimethyl siloxane only, balls and plates having been re-

moved. For calibrations of transducers with low natural frequencies,
not only is the resonance frequency lowered, but the degree of damp-
ing is also altered; 0.28-, 0.32-, and 0.48-cm-d iameter balls were
required for transducers B, C, and D, respectively, when the length
of the section of balls was held to 2.7 cm. (For transducer B, it

appears that balls of about 0.44-cm diameter would have given a more
uniform response but were not available; the height of the section of
balls could have been changed but for the sake of consistency was not.)

Consideration of test transducer natural frequencies is useful in

an evaluation of transducer dynamic performance as shown in curves such
as those of figure 6. Pressure transducers are commonly not used to
measure pressures varying at frequencies beyond approximately 20% of
the natural frequency of the instrument. For transducers B, C, and D,

this 20% limit is approximately 700 Hz, 1.0 kHz, and 1.7 kHz, respec-
tively. As may be seen by examination, the response of transducers C

and D is reasonably flat up to their respective limits. The response
of transducer B up to its 20% limit is somewhat less flat.

in a final experiment, the output of the reference transducer
was both recorded and used to provide an input signal for the control-
ler for the vibration exciter with the power to the exciter continuously
adjusted to maintain the reference transducer output at a constant level,

13



The output of the test transducer under these conditions was recorded.

A plot is shown in figure 8 for transducer B. The curve suggests agree-

ment with the manufacturer's specified natural frequency of 3-5 kHz and

should represent the frequency response of the transducer with no inter-

pretation required. Further work is required to validate this technique.

k. CONCLUSIONS

The useful frequency range of the liquid-column sinusoidal pres-
sure calibration source has been increased considerably by damping the
liquid column. The use of steel balls with 10-St dimethyl siloxane
liquid to achieve this damping is simpler and more versatile than
other damping schemes considered. The result is a dynamic pressure
source capable of generating pressure levels of up to 3^ kPa over a

frequency range from approximately 50 Hz to 2 kHz, flat to within
+5%. At frequencies below 50 Hz the pressure amplitude is limited
by the displacement capability of the vibration exciter used. The
estimated total calibration measurement error using the source with
a typical transducer is +ji.]%.

It is important to note that a flat frequency response can be
achieved over a frequency range of up to a maximum of about 80% of the
natural frequency of the liquid column-transducer combination, and
that this natural frequency is lower than that of the component with
the lowest natural frequency.

The wetted surface area required to damp adequately a particular
liquid column and transducer combination is dependent on the natural
frequency of the combination. Combinations with high natural frequencies
require larger wetted surface areas than those with low natural frequen-
cies. The wetted surface area may be adjusted easily by changing ball

size, ball quantity, or both.

Over a frequency range of up to 20% of the resonance frequency
of the liquid-column transducer combination, the dynamic pressure source
provides an absolute calibration to within 5% of the true pressure sup-
plied in the sense that this pressure is calculable on the basis of

mechanical parameters that can be measured and on the basis of knowl-
edge of the acceleration imparted to the column, which acceleration can

be measured with instruments that may be traced in calibration to basic
standards. For the remainder of the frequency range, a reference trans-
ducer with a flat response over that range is required both for setting
and monitoring the degree of damping.

Another calibration technique using the source has been the sub-

ject of several experiments and requires further development. In this

technique, a signal derived from the reference-transducer output is

supplied as a control input to the vibration-exciter control, and the

acceleration of the column is continuously adjusted to maintain the pres-
sure amplitude at a constant level as the frequency is swept over the

desired range. In principle, the only frequency limitations should be

14



imposed by the frequency responses of the reference transducer and

the exciter system.

5. RECOMMENDATIONS

The following recommendations for future work are based on the

experience gained during the development of the dynamic pressure

source and during the various calibrations.

1. A number of different high-natural-frequency, flush-diaphragm
pressure transducers should be calibrated with the dynamic pressure
source to determine if the degree of damping is approximately constant.

2. The number and size of balls should be more widely varied
and curves generated showing the relationship between these parameters
and column resonance frequency and damping characteristics.

3. The effect of temperature changes 6n the degree of damping
should be investigated.

k. Calibrations using the source should be attempted on trans-
ducers with low natural frequencies, with a constant-level-control
servo used to maintain the reference transducer output constant with
frequency. This technique should be developed and validated.

5. The use of columns with larger bores to reduce the percent
contribution of dVt (see 2.1.2) should be investigated. This recom-
mendation is particularly aimed at calibrations of transducers with
large dVt values, usually transducers with low natural frequencies.

6. The use of short columns (with high resonance frequencies)
should be investigated without damping over a frequency range of up

to 20% of the resonance frequency of the column-transducer combination.

7. The presence of the retainer tube used to transmit force
from the threaded plug to the upper plate has been found to complicate
measurement of the height of the liquid column. A modified design
eliminating the retainer tube would be desirable. It has been sug-
gested that the upper plate could itself be threaded into the bore.

8. Any new columns should be fabricated without the flats
machined near the base into which the transducer mounting holes are
bored. The presence of the slots formed by the flats reduces column
stiffness.

9. The discrepancy between the theoretical predictions for
natural frequency and the experimental values achieved requires fur-
ther examination. Experiments with several fluids, dimensions, and
degrees of damping should provide data for further analysis.

15



6. ACKNOWLEDGEMENTS

Kurt Muhlberg designed and supervised construction of the

mechanical components of the various development versions of cali-

brators .

7. REFERENCES

[1] Hilten, J. S., Lederer, P. S. , and Sethian, J. D. , A Simple Hy-

draulic Sinusoidal Pressure Calibrator, NBS Tech. Note 720 (April

1972).

[2] Lederer, P. S., Development of a Dynamic Pressure Calibration Tech-

nique - A Progress Report for the Period June 15, 1973 to Septem-

ber 15, 1973, NBSIR 73-290 (October 1973) . (Available as COM 74-10974

from the National Technical Information Services, Springfield, VA 22161.)

[3] Vezzetti, C. F. , Lederer, P. S., and Hilten, J. S. , Development of
a Dynamic Pressure Calibration Technique - A Progress Report for
the Period February 15, 1 97^ to August 15, 197 1*, NBSIR 75-708
(June 1975). (Available as COM 75-10817 from the National Technical
Information Services, Springfield, VA 22161.)

[4] Bradley, W.
, (and Eller, E. E., Introduction to Shock and Vibration

Measurements, Book, Shock and Vibration Handbook, Vol. 1, Eds.

C. M. Harris and C. E. Crede, pp. 12-1 -- 12-24 (McGraw-Hill Book
Company, New York, NY, 1 96 1 )

.

[5] Hilten, J. S. , Lederer, P. S., Vezzetti, C. F. , and Mayo-Wells,
J. F. , Development of Dynamic Calibration Methods for Pogo Pres-
sure Transducers, NBS Tech. Note (to be published in 1976).

16



TABLE 1

Working Liquids Used in Preliminary Investigations of Damping

Liquid Viscosity Density

(St) (kg/m 3
)

Bulk
Modulus

(Pa)

Velocity
of

Sound

(ra/s)

Advantages Disadvantages Experiments
Column Description

I.D. Height Material
(cm) (cm)

Damping Amplitude
Ratio*

0.009 1.00 x 10 3 20.9 x 10 9 1460 High bulk
modulus, and
velocity of
sound;
non-toxic;
inexpensive

Low viscosity;
high vapor
pressure;
corrosive to

steel

2.2
1.3
1.3

1.2

Brass Smooth wall 14

Brass Smooth wall 12

Copper Spiral fins 15

Brass Woven -metal

mesh filter
8.0

Copper Multiple
channels

9.0

Copper Interlacing fins **

Brass Smooth wall 5.0

Brass Woven-metal
mesh filter

**

Brass Sintered-metal
f i 1 ter

**

Copper Multiple channel s 3.7

Tetrabromo- 0.080 2.95 x 10 3 29.3 x 10 9 1007
ethane

High density;
non-toxic

Low viscosity;
high vapor
pressure;
corrosive to

steel , aluminum
and other metals
and rubber

2.2
1.2

1.2

Fluorocarbon 0.026 1.88 x 10 3 9.8 x 10 9 730 High density; Low viscosity;
non-toxic low bulk modulus

Smooth wall 9.0

Mercury 0.001 13.6 x 10 3 265 x 10 9 1410 High density, Low viscosity;
bulk modulus, dissolves most
and velocity metals, health
of sound hazard

1.1 Stainless
steel

Glycerine 7.50 1.26 x 10 3 44.8 x 10 9 1904 High viscos-

ity, bulk
modulus, and
velocity of

sound; non-
toxic

Hygroscopic Smooth wall 5.2

Petroleum
Oils

0.5 0.86 x 10 3 15.2 x 10 9 1340

925°C

15

(?25 C

High viscos- Low density;
ity and viscosity
velocity of temperature
sound dependent

2.2
2.2

Brass Smooth wall 16

Brass Woven-metal
filter

mesh 3.8

Copper Multiple che nnel! 4.5

Brass Smooth wall 12

Copper Multiple cha nnel; 1.1

Brass Smooth wall 13

Brass Smooth wall 8.0
Aluminum Smooth wall 3.3
and glass

Brass Smooth wall 13.0
Brass Smooth wall 20
Brass Smooth wall 33
Brass Smooth wall 27
Aluminum Smooth wall 7.4
and glass
Aluminum Smooth wall 2.8
and glass
Aluminum Smooth wall 1.4
and glass
Aluminum Smooth wall **

and glass
Brass Multi-tube Response

fixture flat to
±5% from
40 Hz to

75t Hz

Dimethyl 0.97 x 10 3 9.28 x 10 9 987 High
viscosity;
non-toxic

Low bulk modulus
and density

300

125

10

2.4
1.1

0.50

2.4
2.4

2.4
1.1

0.50

0.40

0.20

0.15

0.16

*For a given value of acceleration, amplitude ratio is here defined as the ratio of measured maximum amplitude (at resonance) to the average of the
amplitudes measured over 35-50 Hz.

"Data not obtainable.
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TABLE 3

Factors Contributing to Transducer Calibration Error

Factor Systematic Error

(% of measured value)
Random Error

(% of measured value)

DYNAMIC

Liquid Column

Height of liquid column

Variation of liquid density with temperature

Acceleration Applied

Calibration of exciter control accelerometer
with reference accelerometer and precision of

reading

Transducer Output

Voltmeter calibration of precision of reading

Noise

Trarcverse acceleration response of transducer

±0.1

±1.0

±0.3
d

±0.02 9

±1.0

±0.2

±0.1

±0.05

±0.1 /

TOTAL RMS ±1.05 ±1.03

Estimated Error = RMS systematic + 3 RMS random = ±4.14%

STATIC

Pressure Applied

Pressure gage calibration and precision of reading ±0.07

Transducer Output

Voltmeter calibration and precision of reading

Noise

±0.07

±0.06

±0.03

±0.07

TOTAL RMS ±0.099 ±0.097

Estimated Error = RMS systematic + 3 RMS random = ±0.39%

Typical calibration values for the source are acceleration, 20 gn zero-to-peak and liquid column
height above centerline of transducer, 10 cm using 10-St dimethyl si loxane with a bulk modulus of
9.47 x 10 8 m 3/Pa.

d

Estimate based on manufacturer's value of 0.098%/°C and variation of ±2°C.

Estimate based on least count of ±1 mV for measurement of 1000 mV.

Manufacturer's value for range of 20 mV.

e
Estimate based on least count of ±0.01 mV for measurement of 20 mV.

^ This figure corresponds to ±0.02 mV for a typical calibration.

9 This value represents a maximum value for any of the transducers listed in table 4.

h
Manufacturer's value for range of 17 kPa (5 psi).

1
Estimate based on least count of ±0.2 kPa (±0.03 psi) for measurement of 17 kPa.

3 Manufacturer's value for range of 30 mV.
v

Estimate based on least count of ±0.1 mV for measurement of 30 mV.

This figure corresponds to ±0.02 mV for a typical calibration.
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TABLE 4

Transducer Characteristics*

Transducer Type Range
(kPa zero-

to peak)

Natural
Frequency

(kHz)
'

Diaphragm
Diameter

(cm)

Full -Range
Deflection of

Diaphragm
at Center**

(cm)

A-l,A-2,A-3 Silicon
diaphragm
with bonded
Wheatstone
bridge

34 45

B Unbonded
straingage

17 3.5

C Unbonded
straingage

34 5.0

D Unbonded
straingage

102 8.5

E

(Reference)
Piezo-
electric
quartz
crystal

54,400 100

0.22 2.5 x 10-^

1.26

1.26

1.26

0.953

3.8 x 10" 4

3.8 x 10" 14

3.8 x lO" 4

Data not
available
from
manufacturer

*From manufacturer's data.

**The manufacturers specify these deflections as maximum values
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Figure 3: Cross section of dynamic pressure source. Shown are reference
transducer port (B) , liquid-column chamber with 1 .7~cm-diameter
bore (J) , steel balls (K)

,
pierced steel plates (l_) , threaded

plug (M) with vent, retainer tube (N) , and test transducer
port (0).
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9

Figure h: Oscilloscope traces showing peak-to-peak output (mV) from
reference transducer E as a function of frequency (kHz) for

three quantities of balls, as described in the text. The
top trace shows the source-transducer combination as being
overdamped; the center trace, underdamped; and the bottom
trace, near optimum damping. The vertical scale is 20 mV

peak-to-peak per division, and the horizontal scale is 0.3
kHz per division. The left-hand edge of each trace begins
at 35 Hz; the sweep range is 3 kHz.
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Figure 5' Schematic of apparatus used to fill the source with liquid
under a weak vacuum. Q is a ball valve in the line between
bell jar and flask. Line R is connected to a source of vacuum,

26
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c

Figure 6 Oscil'oscope traces showing corresponding frequency-response
curves for test transducer (left) and reference transducer E

(right). Of interest is the frequency range over which
transducer output is at a relatively constant level. Trace A:

test transducer A-l ; vertical scale for both transducers is

20 mV
,
peak-to-peak, per division. Trace B: test transducer

B; vertical scale for both transducers is 10 mV, peak-to-peak,
per division. Trace C: test transducer C; vertical scale for
both transducers is 10 mV, peak-to-peak, per division. Trace
D: test transducer D; vertical scale for D is 2 mV, peak-to-peak,
per division and for E, 10 mV, peak-to-peak, per division. The
horizontal scale for all traces is 0.3 kHz per division.

27



CQ

*3K2E23E™

o

l_
1

SZ CD c
4-J 4-1 CD— c 1_ •

3 — 4-»

o
(U n- CD o—
o o O V)
L. c .— •

3 CD > N
o • 1_ •— 3Z
tfl *~^ CD T3 _*a M-
T3 0) l_ o
0) 0) 1_ 0)

D- O D- 01

E ro •—
03 1- l/l N
T3 4-> •— zc 0)
c ^-' .*: Cn
3 CD CQ i

—

CO CD

cd CD • !_

SZ T3 O o
+J C in D-

ro in CD
L. »— •

—

CD

o - CD 2
M- ^-N U CD inO •

—

r—
in 4-> ro CD
CD 0) 1_ O -C
> o CD in 4-J

i- nj >
D L. r— • M

U 4J CD CO N
>—

'

SZ 4-> IE
CD \- c
in O o ir\
c N CO
o - • —
Q.^—

-

in l_ 4-J

</l CO CD o ro
CD •— JZ
!_ 0) O in

1 u c CD c
>- CD CD sz •—
O J- D 4J en
C 4-1 cr CD

<u *-- (D a* -O
3 i_ in

cr co M- 4-J CD

(D •— o
i_ — c co
U- ^-s (D 3 i_

< i_ 4-J

CO D >•
C CD 4-> L. SZ— O TO CD o
2 CD C !_ CD

O i- 4-J CD

SZ 4-> d> .—
l/l

-—' > -Q M-
•— 1_ O

in «-* 4-> CD

CD 1 o CD

o < CD C O)
CD Q. •— "O
L_ i- in CD
4-> CD CD 4-»

O 1- D T3
CD D C_ C
Q--D CD 4-> CO

O 01 SZ D -C
O C 4-> o 1

l/l (D 4-»

O s- CD UJ »4-

— 4-1 !_ CD
i

—

CD s_ *—— 4-1 CD

O l/l 4-> u CD
l/> CD in 3 SZO 4-1 CD T3 H

CD
s_

C7>

28



c
<u

(/)

CD

0) !-

-C Cl
4-1 0)

l_

.c
4-p -a

CDO
CD

on

of

frequency

(log

Hz

the

text.

This

plot

s

„ » — C
INI +j ._
T* ea

C T3
D 0) l-

>- u- .o cu—
CD IB t D
Z O -O

co tn 1/1LU fD CD C

CD ^D -O fD

CD
UJ

•—> S-

CD 1/1 'in +j

E 01

az 1- «4-

u_

Test

transducer

B

output

(mV

pressure

level

held

constant,

the

true

frequency

response

LfJ LO

CO

CD

(sluj aui) indino a y3onasNvai

29



NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS Technical Note 914

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

A New Dynamic Pressure Source for the Calibration of
Pressure Transducers

5. Publication Date

June 1976
6. Performing Organization Code

7. author(S) Carol F. Vezzetti , John S. Hi 1 ten,

J. Franklin Mayo-Wells, and Paul S. Lederer

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

4253456
11. Contract/Grant No.

NASA Order L-88319
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

NASA Langley Research Center
Hampton, VA 23365

13. Type of Report & Period
Covered

Final
14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less (actual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

A dynamic pressure source is described for producing sinusoidal ly varying
pressures of up to 34 kPa zero-to-peak, over the frequency range of approximately
50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure
transducers and consists of a liquid-filled cylindrical vessel, 11 cm in height,
mounted upright on the armature of a vibration exciter which is driven by an
amplified sinusoidally varying voltage. The transducer to be calibrated is
mounted near the base of the thick-walled aluminum tube forming the vessel so
that the pressure-sensitive element is in contact with the liquid in the tube.
A section of the tube is filled with small steel balls to damp the motion of the
10-St dimethyl siloxane working fluid in order to extend the useful frequency
range to higher frequencies than would be provided by an undamped system.

The dynamic response of six transducers provided by the sponsor was
evaluated using the pressure sources; the results of these calibrations are
given.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated 6y sem/co/ons; Calibration; dynamic; dynamic calibration; dynamic pressure;
dynamic pressure source; liquid column; pressure; pressure source; pressure
transducer; sinusoidal pressure; transducer.

18. AVAILABILITY [X] Unlimited

J For Official Distribution. Do Not Release to NTIS

\ \

Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. CU TOftT

_J Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES I

35

22. Price

$0.85

U5COMM.DC 29042-P7"



NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau

of Standards research and development in physics,

mathematics, and chemistry. It is published in two sec-

tions, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of physi-

cal and chemical research, with major emphasis on

standards of physical measurement, fundamental con-

stants, and properties of matter. Issued six times a

year. Annual subscription: Domestic, $17.00; Foreign,

$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the math-

ematician and theoretical physicist. Topics in mathe-

matical statistics, theory of experiment design, numeri-

cal analysis, theoretical physics and chemistry, logical

design and programming of computers and computer

systems. Short numerical tables. Issued quarterly. An-

nual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bul-

letin)—This monthly magazine is published to inform

scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS. The magazine highlights and reviews such

issues as energy research, fire protection, building tech-

nology, metric conversion, pollution abatement, health

and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in

measurement standards and techniques, properties of

matter and materials, engineering standards and serv-

ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, $9.45; Foreign, $11.85.

NONPERIODICALS

Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and

industrial practice (including safety codes) developed

in cooperation with interested industries, professional

organizations, and regulatory bodies.

Special Publications—Include proceedings of confer-

ences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such

as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables,

manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-

ties of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide

program coordinated by NBS. Program under authority

of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for

these data is the Journal of Physical and Chemical
Reference Data (JPCRD) published quarterly for NBS
by the American Chemical Society (ACS) and the Amer-
ican Institute of Physics (AIP). Subscriptions, reprints,

and supplements available from ACS, 1155 Sixteenth

St. N. W., Wash. D. C. 20056.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform-
ance criteria related to the structural and environmen-
tal functions and the durability and safety character-

istics of building elements and systems.

Technical Notes—Studies or reports which are complete
in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-

ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under pro-

cedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations.

The purpose of the standards is to establish nationally

recognized requirements for products, and to provide

all concerned interests with a basis for common under-
standing of the characteristics of the products. NBS
administers this program as a supplement to the activi-

ties of the private sector standardizing organizations.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-
ards Register. Register serves as the official source of

information in the Federal Government regarding stand-

ards issued by NBS pursuant to the Federal Property
and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal
Regulations).

Consumer Information Series—Practical information,
based on NBS research and experience, covering areas
of interest to the consumer. Easily understandable
language and illustrations provide useful background
knowledge for shopping in today's technological

marketplace.

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern-
ment). In general, initial distribution is handled by the
sponsor; public distribution is by the National Technical
Information Service (Springfield, Va. 22161) in paper
copy or microfiche form.

Order NBS publications (except NBSIR's and Biblio-

graphic Subscription Services) from: Superintendent of
Documents, Government Printing Office, Washington,
D.C. 20402.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey

bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service

A literature survey issued biweekly. Annual sub-
scription: Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quar-

terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription : $20.00.
Send subscription orders and remittances for the
preceding bibliographic services to National Bu-
reau of Standards, Cryogenic Data Center (275.02)
Boulder, Colorado 80302.

Electromagnetic Metrology Current Awareness Service

Issued monthly. Annual subscription: $24.00. Send
subscription order and remittance to Electromagnetics
Division, National Bureau of Standards, Boulder,
Colo. 80302.



U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-21S

SPECIAL FOURTH-CLASS RATE

BOOK

OVUT-O^

YEARSBS
19Q1-137B


